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Forced magnetic reconnection 

• 2D slab of plasma with sheared force-free field stable to tearing 
mode 

– Hahm & Kulsrud 1985, Vekstein & Jain 1998 

• Apply transient perturbation to the boundaries 
– Analytic models: directly perturb the boundary of the plasma 

– Numerical models:  normal  flows at boundary 

• Magnetic reconnection forms a chain of magnetic islands 

 

 Forced reconnection diagram – Gordovskyy et al 2010 



Particle acceleration in forced reconnection: 
2D MHD + test particles 
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‘PARTICLE ACCELERATION IN FRAGMENTING PERIODIC RECONNECTING CURRENT SHEETS IN SOLAR FLARES’ – Gordovskyy et al. 2010 

MHD simulation for forced reconnection Test particle final positions Particle spectra  
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Merging islands in tearing unstable current sheet 
MHD + Test Particle approach 

MHD simulation for tearing unstable CS – Zhang 2015 

Test particles in stationary field snapshots 
 – Zhang 2015 



Coalescence 

• Chain of magnetic islands (O-
points) 

• Attractive parallel currents  

• Neighbouring islands coalesce  

 

• To simulate this:  

– Capture multiple islands and 
allow symmetry-breaking with a 
long numerical box 

– Simulate large period of time (> 
150 Alfvén times) 

J. Schumacher and B. Kliem 1997 



Aims of current study 

• To investigate effect of different spatial driving disturbances 
on forced reconnection – field evolution and energetic 
particles 
– In general,driving disturbance is superposition of many wavelengths 

– How do islands develop and evolve for multi-wavelength 
perturbations?  

– Does forced reconnection “work” for more realistic driving 
disturbances e.g. localised perturbation? 

• To investigate reconnection, energy release and particle 
acceleration during island formation and island coalescence 
– How does distribution of energetic particles evolve through different 

phases? 

– How does merger of islands affect particle energy spectra and spatial 
distributions? 



Simulation set up 

• Initial 1D force-free field: 

• Boundary conditions: 
– Conducting walls in y 

– Periodic in x 

• Transient spatially-sinusoidal boundary perturbation: 

• Simulations were performed using Lare2D (Arber et al. 2001) 
– Anomalous resistivity was used: resistivity is enhanced in regions of 

strong current.  
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Long cell simulations 

• 16 by 2 length grid with 2048 by 256 grid points 
• Resistivity: η = 10-4 when J > 6, else η = 10-7 
• Perturbation: amplitude Δ = 0.05, wavelength L = 4, duration tp = 16 tA 
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Single long-wavelength driving disturbance 

t = 24 tA 

Single wavelengthsS 
 

: L = 16 



t = 40 tA 

Single wavelengths: L = 16 Single long-wavelength driving disturbance 



t = 56 tA 

Single wavelengths: L = 16 Single long-wavelength driving disturbance 



t = 140 tA 

Single wavelengths: L = 16 Single long-wavelength driving disturbance 



t = 196 tA 

Single wavelengths: L = 16 Single long-wavelength driving disturbance 



t = 350 tA 

Single wavelengths: L = 16 Single long-wavelength driving disturbance 
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• Time  t = 92 tA 
• Above: multiple 

wavelengths  
• The growth of the central 

island is supressed by the 
short wavelength 
perturbation 
 

Multiple wavelengths: L1 = 16, L2 = 2 

L = 2 L = 16 

Mixed wavelength perturbation 



Mixed wavelength perturbation 

 



Energetics for multiple wavelength perturbation:  
L1 = 16, L2 = 2 

Multiple, smaller 
reconnection events 
result in ‘skipping’ 
first equilibrium and 
relaxing to fully 
coalesced equilibrium 
in a shorter time 



Localised driving perturbation 
(Gaussian) – Magnetic field 

 



Localised driving perturbation 
(Gaussian) – Electric field 



Localised driving perturbation 
(Gaussian) – velocity field 



Test particles  

• Test particle trajectories were calculated using GCA (Guiding 
Centre Approximation) code1  

 

• Takes time-dependent MHD fields, interpolates fields in time 
and space. 

 

• Scale parameters: 
      L0 = 104 m  B0 = 3×10-3 T   ρ = 2.4×109 cm-3  

 

• Boundary conditions: periodic in x, free in y & z. 

 
1 Gordovskyy et al., ApJ 2010 
2 Northrop, 1963 



Short domain trajectories  
No coalescence 

MHD parameters: 
- Initial current sheet thickness 

y0 = 0.25 
- η = 3.2×10-4 when J > 4.1,    

else η = 0 
 
Right: Bottom plot is a zoomed in 
section of top. Initial particle 

positions highlighted by dots. 
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Typical trajectories:  x-y plane 

Typical trajectories:  x-z plane 



 
Short domain trajectories 

 

MHD parameters: 
- Initial current sheet 

thickness y0 = 0.25 
- η = 3.2×10-4 when J > 4.1,    

else η = 0 
 

Zoomed in section of top. Initial 
particle positions highlighted by 

dots. 

|Jz| & B lines 
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Typical trajectories:  x-y plane 

Typical trajectories:  x-y plane 



Short domain trajectories 
 

Particles on closed 
field lines travel 
further in z 
direction, indicating 
greater acceleration 
due to 
concentrated 
electric field at 
island separatrices. 
 
 
 
 
 
x-z plane 

Typical trajectories:  x-y plane 

Typical trajectories:  x-z plane 



Short domain trajectories 

Particle energy against x position 

Particle energy against x position 



Long domain with island coalescence -  trajectories 
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Position in x-y plane 



Long domain with island coalescence - trajectories 
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Long domain with island coalescence –ion distribution 

|Jz| & B lines 
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Summary & future work 

• Particles on closed field (magnetic islands) are preferentially accelerated 
due to concentration of electric field about separatrices 

• Island coalesence  second step of magnetic reconnection & particle 
acceleration. 

• Electric fields in coalesence are very localised and in reverse direction 

• Forced reconnection and island coalescence could play a role in multi-
stage acceleration in solar flares 

 

• Further analysis of particle energisation in 2D fields 

• 3D geometries  
• Islands → twisted flux ropes (kink instability?) 

• Reconnection on different resonant surfaces → island overlap  (stochastic 
fields?) 


